Abstract—Recent efforts in data cleaning of structured data have focused exclusively on problems like data deduplication, record matching, and data standardization; none of these focus on fixing incorrect attribute values in tuples. Correcting values in tuples is typically performed by a minimum cost repair of tuples that violate static constraints like CFDs (which have to be provided by domain experts, or learned from a clean sample of the database). In this paper, we provide a method for correcting individual attribute values in a structured database using a Bayesian generative model and a statistical error model learned from the noisy database directly. We thus avoid the necessity for a domain expert or clean master data. We also show ho...